

This practice exam was produced by RTD Learning for not-for-profit use by Alberta students and teachers.

Use the following information to answer the next question.

The following statements are made of a function $f(x) = a(2^{x-1}) + d$, where a , and d are integers, $a > 0$:												
Statement 1: The y-intercept of the function is $\frac{a}{2} + d$ Statement 4: There can never be an x-intercept												
Statement 2: There is an asymptote at $x = 1$ Statement 5: There is an x-intercept when $d < 0$												
Statement 3: There is an asymptote at $y = d$ Statement 6: The inverse function will have a domain $x \in R$												
NR *	The true statemen	ts are,, and Write in any order		Answers are on the back page Full, worked out solutions can be found at www.rtdmath.com								
 According to the federal census, the population of Calgary in 1971 was 403 319, and by 2016 had grown to 1 239 220. The approximate average annual growth rate over that period is: 												
	A. 1.03%	B. 2.5%	C. 3.1%	D. 6.8%								
8.	8. A particular drug is administered to a patient so that the initial plasma level is 3600 mg/L. Exactly one day later the level was 1160 mg/L.											
	The approximate half-life for	this drug is:										
	A. 11.3 hours	B. 14.7 hours	C. 25.5 hours	D. 39.2 hours								
_												
9.	investment with the goal to a	nvested \$1000 into a GIC, v double his money to \$2000	which in that time has grown t	0 \$1127.84. Harry made his								
	Assuming his rate of return stays the same, and he can withdraw at any point, the number of additional years Harry must wait, correct to the nearest tenth, is:											
	A. 5.8 years	B. 9.2 years	C. 11.5 years	D. 9.5 years								
NR *	If $log_a(8) = 2b - 1$ nearest tenth is	and $log_2 a = b$, the large	st positive value of <i>b</i> , correct	to the								
10.	If $log_5a = b + 2log_5c$, the	n a is equal to :										
	A. $\frac{25}{b^c}$	B. $5^{b}c^{2}$	C. bc^2	D. $\frac{5^{c}}{12}$								
	υ			<i>b</i> ²								
	_											
NR *	An equation log_{x+}	$_1(2x + 10) = 2$ has First digit of you	real solution(s), the largest c ur answer	of which is $x = $ Second digit of your answer								

PART 2 - Written Response

Answers are on the back page Full, worked out solutions can be found at www.rtdmath.com

Use the following information to answer WR#1:

* Written Response Question 1

• Determine the values of *a* and *k* to derive the equation of the function. Show your reasoning. (2 marks)

• Given a function $f(x) = 3(2)^x - 1$, determine the equation of the inverse function g(x), and state the domain, range, and equation of the asymptote of g(x). (3 marks)

BONUS NOTE: An actual diploma exam question would never have a bonus component (sorry!)
 Use an algebraic process to determine the exact value of any x or y intercepts for g(x).

Use the following information to answer WR#2:

Strontium-90 is a radioactive isotope with applications in medicine and industry, and causes concern in fallout from nuclear weapons and accidents. Soil samples in particular area were tested for Strontium-90 over various years, and the results shown here:

Year	Millicuries (mCi) per square km 1.220		
0 (initial)			
5	1.082		
10	0.959		

* Written Response Question 2

• Assuming an exponential rate of decay, algebraically determine the half-life for Strontium-90. (correct to the nearest tenth of a year) Use your result to construct an equation that models the amount of Stontium-90 in the soil, in mCi per square km, as a function of time in years after the initial sample was taken. (3 marks)

• The amount of lodine 131 in a sample after t days can be modeled by the equation $A = A_0(0.9172)^t$, where A_0 is the initial amount lodine 131.

Algebraically determine the minimum amount of time needed for a sample of Iodine 131 to decay to 10% of its initial amount. *(2 marks)*

• BONUS NOTE AGAIN: No actual bonus questions will be on your diploma exam! Determine the half-life for lodine 131 from the second bullet, to construct an alternative equation in the form $A = A_0(b)^{\frac{t}{p}}$, where A is the percentage of lodine 131 remaining after t days.

Multiple Choice 1. C 2. A 3. A 4. C 5. C 6. D 7. B 8. B 9. D 10. B 11. C 12. D 13. A 14. B 15. D 16. A Numerical Response 1. 472 or 427 2. 135 any order 3. 1.5 4. 13 5. 35 6. 124 7. 6.7	Answers	For full, worke	d-out solution	ns (as well as ot by RTD Learning for	ner practice mat not-for-profit use b	erials) visit wwv y Alberta students c	v.rtdmath.com) and teachers
Numerical Response 1. 472 or 427 2. 135 any order 3. 1.5 4. 13 5. 35 6. 124 7. 6.7	Multiple Choice 1. C 2. A 3. 13. A 14. B 15	A 4. C	<u>5</u> a.t	р <u>,</u> СО	8. B 9. D	10. B 11	L.C 12. D
	Numerical Response 1. 472 or 427 2	onse . 135 any order	3. 1.5	4. 13	5. 35	6. 124	7. 6.7
Written Response	Written Respons	se			1.		

Asymptote: x = 1 (vertical) Third bullet (bonus) x = 2, $y = log_2(\frac{1}{3})$

2. First bullet $y = 1.220(0.5)^{t/28.5}$ or $y = 1.220(0.976)^t$ NOTE: Either form is ok!

Second bullet 26.6 days Third bullet (bonus) $A = 100 \left(\frac{1}{2}\right)^{t/8.02}$